

Copyright (c) 2003 , Synergenix Interact ive AB
All rights reserved

M O P H U N ™ PR O G R A M M I N G GU I D E L I N E S

Version 1.51

20 October 2003

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 2/26

C O N T E N T S
INTRODUCTION...4

THE DEVELOPMENT ENVIRONMENT..5
COMMERCIAL IDE FROM METROWERKS..5
CREATING A MICROSOFT VISUAL STUDIO™ 6.0 MAKEFILE PROJECT ..5
USING MICROSOFT VISUAL STUDIO™ .NET ...8

DEVICE SPECIFICATIONS ... 10

FILENAMES ... 10
GAME FILES..10
DATA FILES..10

BUSINESS MODELS FOR MOPHUN™ GAMES .. 10
DEMO FUNCTIONALITY..10
PAY PER DOWNLOAD GAMES...10
PAY PER LEVEL GAMES..10
IMPLEMENTATION...10

API OVERVIEW ... 11
CAPABILITIES ..11
STREAMS & MULTIPLAYER..11
SOUND ..11
2D BACKGROUND MAPPING LIBRARY ..12
RESOURCES..13
DATA CERTIFICATES...15

Introduction.. 15
IMEI locking DRM .. 15
Types of data certificates.. 15
Using data certificates.. 16
Data Certificate Tutorials.. 17

TUTORIALS ... 18
CAPABILITIES ..18
SOUND ..18
FILES...18
TCP/IP..18
BLUETOOTH/INFRARED..19
2D VIDEO LIBRARY TUTORIALS...19
2D BACKGROUND MAPPING TUTORIALS..19
ANIMANDTRANSP TUTORIAL...19
SPRITE COLLISION..19
SMS TUTORIAL ...19
INPUT ..19
TASK ...19
RESOURCES..20
COMPRESSION ...20
THE EEL..21

WRITING CROSS PLATFORM APPLICATIONS ... 22
DISPLAY ...22
TIMING..22
CAPABILITIES ..22

ADDING RESUME FUNCTIONALITY TO A GAME ... 23

SUPPORTING MULTIPLE LANGUAGES .. 23

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 3/26

DEBUGGING.. 24

APPENDIX A. REVISION HISTORY.. 26

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 4/26

INTRODUCTION

This document is targeted to programmers who want to start developing mophun™ applications. It is
divided into several parts where the first part describes how to set up a mophun™ project, compile it
and execute it in the mophun™ emulator.

The second part of this document describes the different parts of the mophun™ gaming API to help
avoid common mistakes.

In the SDK there are several tutorials that use different functionality of the API. The third part of this
document describes the tutorials, and how to build and execute them. Feel free to get ideas from
them.

The last part has some miscellaneous tips and tricks.

The latest version of this document is available on http://www.mophun.com and for more
information please visit the mophun™ developer’s forum at the same address.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 5/26

THE DEVELOPMENT ENVIRONMENT

You can run everything from the command line right out of the box but there are many other ways to
set up your development environment for mophun™.

Commercial IDE from MetroWerks

MetroWerks has released mophun™ support in CodeWarrior.

Creating a Microsoft Visual Studio™ 6.0 makefile project

Tip of the day:
Add the compile switch –fvstudio in the makefile to enable double-click on error in Visual Studio.
(See the example makefile at step 6)

Here is a description of how to create a project in Microsoft Visual Studio™.

1. Open up Visual Studio™ 6.0
2. Open New on the File menu.
3. Select the Projects tab and find Makefile in the list.
4. Choose a suitable Project name and location and press OK.

5. Set the .mak file name to the name of your makefile and click Finish.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 6/26

6. Create a makefile. Below is an example of a makefile.

NAME: makefile
PROJECT: mophun™ Tutorials
DATE: 2002-03-14

FLAGS

Use –g to enable debugging
Add –fvstudio to enable Double click on error in Visual Studio

CFLAGS = -O2

OBJECT FILES

OBJS = Compression.o

all: Compression.mpn

COMPILER

.c.o:
 pip-gcc -c $(CFLAGS) -o $@ $<

LINKER

-mstack = 512 - This is the desired STACK size
-mdata = 10000 - This is the desired HEAP size. This is the memory
used when doing memory allocations.

Note: remove –s if you want to use the debugger.

Compression.mpn: $(OBJS)
 pip-gcc -o $@ $(OBJS) -mstack=512 -mdata=10000 -s –ldatacert

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 7/26

7. Save the .mak file in the same directory as the project files.
8. Include the makefile to the project. Select Project, Add to Project, Files from the menu:

9. Create a .c file for your program. Select File, new on the menu:

10. Name your .c file and press ok. (Compression.c in this example to match the .mak file)
11. Start Coding! Below is a valid mophun™ program.

#include <vmgp.h>

int main(void)
{
 vClearScreen(vRGB(255,0,0)); // Fill the background with red
 vFlipScreen(1); // Update the screen

 while(!vGetButtonData()); // Wait for key press

 return 1;
}

12. Set the correct1 path to the mophun™ compiler under Tools – options – Directories

(Executable files in the drop down combo). The PATH may also be set in the makefile.
13. Press F7 to compile.
14. Test the .mpn module in mophun™ emulator.

1 e.g. c:\mophun\bin (depending on where you have installed mophun)

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 8/26

Using Microsoft Visual Studio™ .NET

1. Create a makefile as above
2. Start Visual Studio .NET, choose a name for your project and choose: Makefile Project:

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 9/26

3. After pressing OK, a dialog pops upp, press Application Settings and enter “nmake” in the “Build
Command Line”, and change the extension of the output- file to your mpn filename:

4. Go to Tools | Options and make sure that your mophun/bin directory is in the list. If not, add it:

Note: when compiling an erroneous file, the errors can be found by pressing the “Output” tab.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 10/ 26

DEVICE SPECIFICATIONS

To get a better understanding of the target terminal you will be developing for, we advice you to
carefully go through the header file “vmgpSonyEricsson.h” found in “/pip/include” directory under
your mophun™ install directory.

Also visit www.mophun.com and click on “Phones” to see the details for each device.

FILENAMES

mophun™ filenames can be up to 29 characters. The _ character has a special meaning in mophun™
filenames and should only be used for deployment purposes.

Game files

mophun™ game files always have the extension .mpn and contain all the code for a game, and possibly
built-in data.

Data files

We recommend that files containing data for extra levels use the .mpc extension. This is the extension for
data certificates (see page 15).

BUSINESS MODELS FOR MOPHUN™ GAMES

mophun™ games are divided into pay per download games and pay per level games. Any game can also
have demo functionality.

Demo functionality

Demo functionality means that the .mpn file (the game itself) can be distributed freely so that the end user
can get a feel for the game before buying it. The distributor then uses the VST (Vendor Signing Tool) to
signs an empty data ceritificate to unlock the demo. Games with demo functionality can also be purchased
directly in which case the VST signs the .mpn file before download, just like games without demo
functionality. It’s up to the distributor to choose which approach to use.

For games without demo functionality the VST always signs the .mpn file before download.

Pay per download games

Pay per download games do not have extra levels.

Pay per level games

Pay per level games are games that the user can buy extra levels for. The extra levels always cost money.
The data for a level is contained in an .mpc file (data certificate) that is signed by the VST.

Implementation

The game should clearly display its state as early as possible after startup. A straightforward way to
indicate when in demo mode is simply to display “DEMO” and to have an in-game menu that lists the
available levels. How you choose to do this should be documented in test.txt, see the Certification Process
document.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 11/ 26

API OVERVIEW

This part of the document includes guidelines for the different parts of the API.

Capabilities

Since mophun™ exists on more than one platform, and you want your software to work on as many
of them as possible, it is important to check the capabilities of a system instead of assuming that
certain features are present.

To show the usage of capabilities, a simple tutorial that prints the system features can be found in the
SDK.

Note: Don’t forget to set the size member of the structure before sending it to vGetCaps:

SYSCAPS syscaps;
syscaps.size = sizeof(SYSCAPS);
if(vGetCaps(CAPS_SYSTEM,&syscaps))
{
}

Streams & multiplayer

There are several tutorials covering streams in the SDK. They are separated into the following topics:

• File - a tutorial that shows how to create and read files.
• TCP/IP - a tutorial that uses TCP to connect to a server. The server software (and source) is

included.
• Bluetooth/Infrared - a tutorial that shows communication using BT or IR. Play the two-dot

game.

Note: Don’t forget to check the capabilities for supported stream types.

These stream types provide the basic functionality needed to create multiplayer games. TCP/IP
(especially over GPRS) or SMS is ideal for turn based games with a game server and BT/IR for local
peer-to-peer games where the network latency is not acceptable.

Sound

A tutorial on sound is included in the SDK.

Note: Don’t forget to check the capabilities for supported sound types.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 12/ 26

2D background mapping library

The background mapping library is used to produce scrolling background images built from 8*8
pixel sized tiles. The backgrounds can contian “auto animation” whereby the graphics may animate
on certain tiles without interaction from the program itself. The 2D background mapping library
makes it possible to create fast scrolling, multi layered backgrounds even on low end devices.

Described below is a complete mapheader and map including attributes for auto animation, which
could be used in a game. The tileset is also included.

Here is some code to create and initialize a map header.

mapheader maphead;
maphead.flag = MAP_AUTOANIM | MAP_USERATTRIBUTE;
maphead.format = VCAPS_RGB332;
maphead.width = 12;
maphead.height = 10;
maphead.xpan = 0;
maphead.ypan = 0;
maphead.x = 0;
maphead.y = 0;
maphead.animationspeed = 2;
maphead.mapoffset = MAPADDR; // address for the map data
maphead.tiledata = TILEADDR; // address for the tile set

This is the actual map and attribute data, the red numbers are attribute information (12*10*2 bytes).
001,000,001,000,010,000,001,000,001,000,001,000,001,000,004,000,016,000,005,128,016,000,010,000,
014,000,001,000,001,000,001,000,013,000,001,000,001,000,001,000,016,000,005,128,016,000,012,000,
001,000,001,000,014,000,001,000,001,000,001,000,001,000,014,000,016,000,005,128,016,000,001,000,
012,000,001,000,001,000,001,000,001,000,001,000,001,000,001,000,016,000,005,128,016,000,003,000,
001,000,001,000,001,000,001,000,001,000,001,000,001,000,009,000,002,000,002,000,002,000,002,000,
001,000,001,000,001,000,001,000,001,000,001,000,001,000,010,000,004,000,009,000,002,000,002,000,
001,000,013,000,014,000,001,000,001,000,001,000,001,000,001,000,014,000,004,000,016,000,016,000,
002,000,002,000,002,000,002,000,002,000,015,000,001,000,001,000,001,000,001,000,016,000,016,000,
002,000,002,000,002,000,002,000,002,000,002,000,002,000,002,000,002,000,002,000,002,000,002,000,
016,000,016,000,016,000,016,000,016,000,016,000,016,000,016,000,016,000,016,000,016,000,016,000,

Attribute

The only attribute included is the auto animation attribute (128), but of course all ground tiles could
have a user specific “down collision attribute” (e.g 2). 128 = AUTO ANIMATION, the tile will cycle
through 4 tiles, see below:

For more information about the attribute format see the mophun™ API Reference Guide

This is what the tilemap will look like when it is displayed (it will animate)

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 13/ 26

Tiles
Here is the tile set for the map above:

Resources

A resource contains some form of data needed by the application. It could be sprites, fonts, sounds,
etc. For more complete information read the mophun™ Resource Compiler Reference.

The resource data is included by defining it in a resource file for example “res.rc”

Example of a resource file:

SPLASH PACKED SPRITE FORMAT RGB332 "splash.bmp"

SECTION DATA
TILES TILESET 8 8 FORMAT RGB332 "tileset.bmp"
FONTA FONT 6 8 FORMAT IND4"font.bmp" "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ <>.!"

The above file will include one splash screen that will be compressed, a set of tiles and one font.
The res.rc file is passed as indata to the morc (mophun resource compiler) program. morc will
produce an object file that can be linked into the game and a header file to be included in the source:

res.h:

#define SPLASH 0
#define SPLASH_SIZE 4885
#define SPLASH_OFS 0
#define SPLASH_PACKED
#define SPLASH_UNPACKED_SIZE 7690
#define SPLASH_WIDTH 96
#define SPLASH_HEIGHT 80
#define SPLASH_PALINDEX 0
#define SPLASH_FORMAT 7

extern unsigned char TILES[6400];
#define TILES_COUNT 100
#define TILES_TILESIZE 64
#define TILES_WIDTH 8
#define TILES_HEIGHT 8
#define TILES_FORMAT 7
#define TILES_TILEFMT 7

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 14/ 26

#define TILES_SIZE 6400
#define TILES_OFS 0

extern unsigned char FONTA[748];
#define FONTA_CHARCOUNT 41
#define FONTA_CHARSIZE 12
#define FONTA_BPP 2
#define FONTA_WIDTH 6
#define FONTA_HEIGHT 8
#define FONTA_PALINDEX 0
#define FONTA_FORMAT 4
#define FONTA_SIZE 748
#define FONTA_OFS 6400

To use the resource data in the application you have to open the resource and read the data.

#include “res.h”

SPRITE *splash;

FONT FontA;

char *tileset;

int32_t myhandle;

/* decompress the splash screen data into a sprite resource structure*/
myhandle= vResOpen(NULL,SPLASH);
splash = vNewPtr(SPLASH_UNPACKED_SIZE);
vDecompress(NULL, splash, myhandle, 1024);
vStreamClose(myhandle);

/* point to the tiles, the pointer could be indata to the map engine */
tileset = TILES;

/* initialize the font structure */
FontA.width = FONTA_WIDTH;
FontA.height = FONTA_HEIGHT;
FontA.bpp = FONTA_BPP;
FontA.palindex = 0;
FontA.chartbl = FONTA; // character lookup table
FontA.fontdata = FONTA+256; // the bitmap data for the font

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 15/ 26

Data certificates

Introduction

A data certificate is a piece of data that has been digitally signed before being delivered to the end user.
Data certificates are used for:

• For the game to verify that it has been paid for. If the data certificate is valid the game unlocks
functionality as appropriate.

• To pass information from the distributor with the game or level at the time of purchase. (This is
done using “tags”.) The information passed can be the identity of the end user which is used to
enforce the mophun™ DRM solution and for high-score submittal etc. It can also be game specific
information such as a server IP addresses for a multiplayer game for example. This obviously
requires the participation of the distributor.

Even if your game does not require any information there may still be tags inserted by the
distributor into the data certificate to handle dates for a subscription based model for example. All
tags starting with “M” (as in mophun™) are reserved for this.

• Containing extra levels

Data certificates are created on the server side by the Vendor Signing Tool (VST) during the purchase
transaction. The VST does this by adding a header and a digital signature to a data file.

Synergenix will only certify games that use data certificate functionality.

IMEI locking DRM

mophun™ has an optional Digital Rights Management solution that locks a game (or credits/levels etc) to
a specific mobile phone on the fly during the purchase transaction using the IMEI (or “UID”, a hashed
version of the IMEI that can be obtained from the vUID() function).

Data certificate are used in the exact same way regardless if the IMEI locking DRM solution is activated or
not. Synergenix patches the game at certification time to enable or disable the IMEI checking.

Types of data certificates

Data certificates appear as embedded within a mophun™ game and as standalone files.

Embedded Data Certificates

Embedded data certificates are used when the game is purchased directly (the game may or may not
contain demo mode functionality). Should the game later be forwarded to someone else it will go into
demo mode if available, otherwise it should exit.

An embedded data certificate can only be delivered within a game, added to the resource section of the
game.

Standalone Data Certificates

Standalone data certificates are used to unlock game with demo functionality and for new levels. Only the
data certificate file is locked to a specific terminal.

For demo functionality the VST signs an empty file and delivers it with the filename being the game name
but with the .mpc extension.

For new levels the VST signs the data files with the actual level data. The .mpc filename is supplied by the
developer, for example game1_level2_mpc.mpc (when it arrives on the phone it will be installed as
level2.mpc in the game1 directory).

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 16/ 26

Using data certificates

Checklist

Here is a checklist on what a developer must do to include the data certificate support. See the API
reference for documentation on the data certificate functions.

Include placeholders
The resource section of the game has to have a placeholder for the data certificate. Using morc, the
resource compiler, add the following at the top of the resource file:
#include <datacert.h>

This includes the necessary definitions for data certificates. After the METAINFO resource, add
the following
DATACERT_AND_SECURITY_RESOURCE

For games without demo functionality
ü The developer has to add a piece of code at startup that calls on of the data certificate functions. If

it returns DATACERT_SUCCESS the game can continue, if it returns DATACERT_FAILURE
the game must exit. Otherwise it should display a message that the game has expired and then exit.

For games with demo functionality
ü For games with demo functionality the developer has to add a piece of code that checks for valid

embedded and standalone data certificates. The filename of the standalone data certificate to look
for is the same as the game filename as it will be on the phone but with the .mpc extension. The
code must then call the on of the data certificate functions to check the .mpc files contents. If the
function returns DATACERT_SUCCESS for the embedded or the standalone data certificate the
game can continue. If both of the certificates return DATACERT_FAILURE the game must go
into demo mode. In any other case it should display a message that the game has expired and then
exit. (See the tutorials code if this seems complex).

For pay per level games
ü For pay per level games the developer has to add a piece of code for the external extra levels. The

game needs to read the data certificate file with the extra level into memory and then call on of the
data certificate functions. If it returns DATACERT_SUCCESS the game can go on to read the
tags. The data follow immediately after the tags. Remember that the data may need to be aligned
before usage if read straight from the file. The game can then use the data to make the new level
available to the user.

Document the functionality
ü How the demo functionality and extra levels appear in the game should be documented in the

test.txt file (see the Certification Process document). Game specific tags should also be
documented there

Compiler link switch
ü "-ldatacert" must be included for the declaration of the data certificate functions.

(Example: pip-gcc -o $@ $(OBJS) -mstack=1024 -mdata=2048 –ldatacert)

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 17/ 26

Testing data certificates during development

You should verify your data certificate functionality in the emulator after passing your game through
the SDK tool certtest. The syntax is:
certtest [-imei number] [-uid number] [-category number] [-tag tags] infile outfile

The emulator has the following imei and uid numbers:
imei = 12345678901234
uid = 999999999

To insert multiple tags either use –tag argument several times or send in all the tags in one argument
separated by ‘:’.

Since certtest takes IMEI/UID as arguments it is possible to check the behavior of your code for both
valid and invalid IMEI/UID numbers. You should also test the expiration features using the –tag
argument:

• To force your game into demo mode (if you have it) pass in an invalid IMEI number, for
example -imei 12121212121212

• To force your game to be expired, pass in a subscription period that occurs in the past, for
example –tag M00119990101:M00319990102

• To make sure that you have reserved enough space in the placeholder for the data certificate
pass in all possible tags with their respective max lengths. If your game does not use specific
tags this would correspond to the max length of the standard tags only:
M00120030101:M00220030108:M00320100131:M01012345678901234567890123456789012

If the placeholder is not large enough the data certificate check fails.

• If you have demo functionality the expiration feature should be tested with external data
certificates as well.

Use the script in the SDK to test this: DataCertificateTestSuite.cmd

The category parameter declares which device category should be used. It is needed because the security
system changed between category 2 and 3. The Certification Process document contains the list of device
models within each category.

Data Certificate Tutorials

The Eel tutorials use data certificates, see page 21.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 18/ 26

TUTORIALS

There are several tutorials included in the SDK. They all cover different topics of the API and are
described below. In order to be able to compile the tutorials you have to make a change in the
makefile for each tutorial. The PATH variable has to be updated so it reflects the path where you
installed the mophun™ SDK.

PATH TO mophun(TM) COMPILER

PATH = C:\mophun\bin

If Microsoft Visual studio is used the path need to be set under Tools – options – Directories
(Executable files in the drop down combo).

Capabilities

A simple tutorial that prints the capabilities of the system. Nothing complicated. Just compile it and
execute.

Sound

The sound tutorial plays a little tune for you.

Files

The file tutorial creates a file, writes data to it and closes it. Then it reopens it and reads back the
data.

TCP/IP

The TCP/IP tutorial consists of two programs. One server that runs on Windows™, and one client
that runs on mophun™. Start the server first, and then the client. The client connects to the server,
and you will be able to send strings of text to the server by pressing the arrows, or sending strings of
text from the server to the client, by typing a string and pressing enter.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 19/ 26

Bluetooth/Infrared

The BT/IR tutorial is the simple two-dot game. Start the application on two devices, select method of
connection (BT/IR). Then start server on one of the devices and client on the other. When they
connect, play the game.

2D Video Library Tutorials

The 2D video tutorials consists of Drawing objects (bouncing balls) that bounce around on the
screeen. The graphics used in the tutorials are in 8bit (RGB332) .raw format.

2D Background Mapping Tutorials

The 2D background tutorials draws a scrolling background with the background mapping
functionality and draws bouncing sprites on top of it. Setting up sprites, setting up the background
engine are shown in this tutorial.
The graphics used in the tutorials are in 8bit (RGB332) .raw format.

AnimAndTransp Tutorial

Demonstrates how to use the automatic animation feature, and per tile transparency of the
mapengine.

Sprite Collision

A simple tutorial that demons trates how to use the useful collision detection for sprites.

SMS tutorial

The SMS tutorial explains how to send and check for SMS in the phones SMS inbox.

Input

A tutorial that shows how to use the input functionality. The program will check the capabilities and
run tests for directional keys, the pointer and ASCII input if the input form is supported on the
platform.

Task

The task tutorial will create ten tasks that will listen on a channel each and an additional task that will
listen for input from the user. When the input task receives a ‘KEY_ENTER’ command it will send a
command ‘SHUTDOWNTHREADS’ to the main task. When the main task receives the command
‘SHUTDOWNTHREADS’ it will shut down the input task and send a command ‘KILL’ to the ten
child tasks. When the a child task receives the ‘KILL’ command it will respond to the main thread,
the main thread will wait for the child to respond, when it does, the main thread will dispose the child
thread.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 20/ 26

Resources

The resource tutorial shows how to use resources in the form of sprites, tileset and raw data. It also
shows how to uncompress compressed resource data.

Compression

The compression tutorial shows how to load a compressed bitmap. It allocates memory and
decompresses the compressed data to that memory and finally add a sprite header to the beginning of
the data.
The sprite will be drawn to the screen in the form of a mophun™ logo. The program will run until a
key is pressed.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 21/ 26

The Eel

The Eel is a simple game where you control a hungry eel that eats shrimps. The Eel gets longer and
longer for every shrimp it eats, and the goal is to eats as many shrimps as possible while avoiding
collisions with the edges of the pond or with The Eel itself.

The tutorial explains how to put things together in a larger mophun™ project than the other tutorials.
Topics that are covered in this tutorial are:

• capabilities
• fonts
• read data from resource
• save data (highscore) in resource
• input
• timing
• data certificates
• …

Feel free to play around with the code, and create your own quake-killer.

There are different versions of The Eel tutorial:

• TheEel – without any check for data certificates. Can be tested in the emulator directly

• TheEelCertPPD – Pay Per Download version. Checks for internal data certificates

• TheEelCertPPDD – Pay Per Download version with Demo functionality. Checks for internal
and external data certificates

• TheEelCertPPL – Pay Per Level version. Checks for internal and external data certificates
containing a new level (no demo functionality)

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 22/ 26

WRITING CROSS PLATFORM APPLICATIONS

With mophun™ this is finally possible, but with different screen sizes and hardware it doesn’t come
for free and it will not always be possible to create a game that runs well on more than one device but
we encourage you to consider if your game could run cross platform. When you submit your game
for certification specify if you’re targeting:

• a specific device,
• several devices or
• whole categories of devices.

The device categories are defined in the Certification Process document. If you target whole
categories of devices you should test your game with various settings within those categories in the
emulator. There are imaginary profiles for various categories in the emulator to get you started.

Developers that want to target multiple platforms need to consider the following:

Display

Always set the desired display window width / height using vSetDisplayWindow. If your choosen
display width / height is smaller than that of the actual screen your game will be centered on the
screen or streched (highend terminals will use antialiasing). Check video capabilities for actual
screen size if you wish to adapt your game to different resolutions for instance showing more of a
maze or playfield.

Some devices allow the user to change the screen orientation. You can override the user setting by
calling vSetOrientation if your game only supports the default orientation.

Timing

A game that is written and tested for a low end device may run too quickly on a high end device.
Therefore, developers need to put in timing code to specify the maximum speed. While this applies to
arcade games in particular (your chess computer will never be too fast :-) there is almost always some
GUI that may need timing. Try your game on different hardware if available or using different
profiles in the emulator. Example:

while(vGetTickCount() < dwTickCounter);

 dwTickCounter = vGetTickCount() + msperframe;

Capabilities

Remember to use vGetCaps function to check for any caps that might affect your application. For
example if your game has a peer-to-peer multiplayer feature using Bluetooth it should check if
Bluetooth is available and otherwise not display the multiplayer feature. Another good example is
checking if midi is supported. The application might use the beeper instead if no midi support is
available.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 23/ 26

ADDING RESUME FUNCTIO NALITY TO A GAME

When a game is terminated by for example an incoming call (on platforms where such an event just
ends a game without asking the player…) the games destructor is called. This is where functionality
like saving vital game data can take place. This is what the destructor looks like:

__attribute__((destructor)) void savestate(void)
{
 if(gInGameFlag==1)
 {
 SaveResumeData();
 }
}

SUPPORTING MULTIPLE LANGUAGES

If possible, add support for multiple languages within a single game instead of making several
version of it. The game should start in the language that the user has selected on the device but also
make it possible to change language in an in-game menu.

To detect the language the user has selected use vSysGetCulture2.

Run the following code the first time the game is started and store the selected language in a meta
data variable. The next time the game is started just use the meta data variable.

culture = vSysGetCulture();
switch (CULTURE_LANGUAGE(culture))
{
 case CULTURE_ZH:
 switch(culture):
 case CULTURE_ZH_CHT:
 // Traditional Chinese
 case CULTURE_ZH_CHS:
 // Simplified Chinese
 ...

 case CULTURE_EN:
 // perhaps not necessary to distinguish between different English cultures?

 case CULTURE_DEFAULT:
 // display the language selection menu

 case default:
 // use default language (English)
}

2 This feature was introduced with mophun RTE 2.0 but is backward compatible: earlier devices will return CULTURE_DEFAULT

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 24/ 26

DEBUGGING

The debugger used by the mophun™ emulator is a version of GDB with a GUI called insight. The
debugger can be launched by the mophun™ emulator, or started separately and then remote
connected to the mophun™ emulator.

The debugger has to be configured in order to find the mophun™ emulator. This is done from the
“File” menu, “Target settings...” in the debugger. Below are two screenshots from the mophun™
emulator and the debugger with recommended values entered.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 25/ 26

The debugger can be launched without the GDI by running the command “pip-gdb –nw”. To connect
to the mophun™ emulator from the console debugger type the command "target remote
localhost:PORT".

For extended help with running the GDB debugger type “help” in the console or select the “Help
Topics” from the Help menu when running GDB in GDI mode. The GDB manual is also available in
the SDK document folder.

mophun™ Programming Guidelines

© 2003, Synergenix Interact ive AB 26/ 26

APPENDIX A. REVISION HISTORY

Revision Date Author Change
1.48

2003-09-25 Björn Wennerström Added revision history
Added multi language info
Added reference to mophun.com | phones
Moved emulator info to emulator help file

1.50 2003-10-15 Björn Wennerström Added info on setting screen orientation,
category parameter to CertTest

1.51 2003-10-20 Anders Norlander Bring data certificate chapter up-to-date
with the library.

