
intro.pdf — November 30, 2005 — 1

An introduction to Mophun
Simon Kågström

ska@bth.se

TEK

Introduction to MophunSimon Kågström – p. 1/37

A gentle introduction...

• An example from my own back yard

• The REX 6000, the worlds smallest PDA

– In terms of size (around 40 grammes, PCMCIA form
factor)

– In terms of CPU speed (8-bit z80, 4.77 MHz)

– In terms of memory (8KB code+initialized data size, 4KB
stack)

• Programming for it is done using home-made tools

– ZCC, buggy C-compiler (produces inefficient code)

– Reverse-engineered API (Xircom/Intel never released an
official one)

So programming for it should be much fun!

Introduction to MophunSimon Kågström – p. 2/37

REX 6000, cont.

• You sometimes have to be careful when coding for the REX

– Frequently run code can easily become a speed constraint

– Large images: your memory will run out in no-time

– Using the correct data types is very important

– (Buggy compiler)

• Still, it is possible:

Introduction to MophunSimon Kågström – p. 3/37

What should we learn today?

• How to build an run a simple Mophun app

– GCC (plus options)

– Compiling and linking + special about Makefiles

• An intro to the Mophun API

– Sprites

– Tiles and tile maps

– Input

– Sound (some)

• Plus examples on how to use the API

Introduction to MophunSimon Kågström – p. 4/37

What is the Mophun API?

• Platform-independent API for gaming

• Provides graphics, input, sound and communication interfaces

– Sprite engine

– Map (tile) engine

– 3D engine (with newer versions)

– MIDI and samples for sound

– Bluetooth, IR and TCP/IP communication

• The API is implemented natively on each device ...

– (in different versions)

• ... but your application code is run by a virtual machine

– (Do you get visions of java-being-slow-on-a-P4?)

Introduction to MophunSimon Kågström – p. 5/37

Useful resources

• !!!The Mophun API reference!!!

– This is available as a help-file under windows

– You can also browse it with a web-browser

– Very important: Keep this under your pillow at all times!

• Mophun programming guidelines

– A document on how to start with Mophun

– Read this before the Pong lab!

• Mophun assembly reference

– Reference for PIP-assembly programmers

– Read this if you are interested in how the virtual machine
works

• Emulator help etc.

Introduction to MophunSimon Kågström – p. 6/37

intro.pdf — November 30, 2005 — 2

A first, trivial, mophun application
#include <vmgp.h> /* Most Mophun stuff */

#include <vmgputil.h> /* msSleep() etc */

int main(int argc, char **argv)

{

vClearScreen(vRGB(255,0,0));

vFlipScreen(1);

while(!vGetButtonData());

return 1;

}

• This application clears the screen to
red and waits for a keypress.

• Usually both header-files are included

• The functions used here are outlined later

• Bottom-line: Small amounts of code needed for simple things

Introduction to MophunSimon Kågström – p. 7/37

Using VC++ with Mophun

• You can use VC++ for mophun

– This is not the only option, the standard UNIX
environment works as well

• Mophun programming guidelines have more on VC++

– But beware: It’s not complete!

• And now ... some demonstration!

Introduction to MophunSimon Kågström – p. 8/37

Using VC++ with Mophun, steps

• File-¿New Project

• Select Makefile project, enter name

• Select application settings

– Output NAME.mpn (was .exe)

– Build command line: nmake -f makefile

– Clean command line: nmake -f makefile clean

– Rebuild command line: nmake -f makefile rebuild

• Copy the files into the project directory (if you have them
beforehand)

• Right-click Source Files in the Solution side-bar, Add-¿Add
Existing Item

Introduction to MophunSimon Kågström – p. 9/37

Building Mophun applications

• Building mophun applications consist of 4 steps:

1. Compiling “resources” (explained later)
morc res.txt

2. Compiling your source code
pip-gcc -Wall -O2 -c main.c -o main.o

3. Linking the object-files together (GCC or ld)
pip-gcc -mstack=512 -mdata=16384 main.o res.o -o

my game.mpn

4. For downloading to your phone: Certifying your game
– This is done by Synergenix (or through

mocert.student.bth.se here)

• We’ll talk about Makefiles at the end of the lecture

Introduction to MophunSimon Kågström – p. 10/37

Compiling source code

• Compiling source files is a standard GCC-matter (using
pip-gcc)

• Useful pip-gcc-options

– -O2: Optimize code with level 2

– -g: Produce debugging information (for use with GDB,
don’t use -O2 with this option)

– -Wall: Present all warnings (use this and follow its

recommendations!)

– -c: Compile only, do not link

– -fvstudio: Produce error messages that visual studio can
parse

pip-gcc -Wall -O2 -c main.c -o main.o

Introduction to MophunSimon Kågström – p. 11/37

Linking object files together

• When linking you have to supply some extra info

• -mstack=512: Use 512 bytes of stack space

– Stacks? Refer to the C-lectures!

– Should be large enough to handle your largest local

variable + function nesting

int fn(int n) {

uint8_t buf[128];

fn(n+1);

}

• -mdata=16384: Use 16384 (16KB) of heap space.

• This should be large enough to handle all your vNewPtr-data
(malloc)

Introduction to MophunSimon Kågström – p. 12/37

intro.pdf — November 30, 2005 — 3

Resources

• Resource-files specify data used by the game

– Sprites, tiles, fonts etc.

• The resource-file is a formatted text-file

• From a resource-file (res.txt), two files are created:

– res.h: A C header-file with definitions for the resources

– res.o: A object-file with the resource data

• How to use the resources depend on the type (more later)

• To compile resources, the morc executable is used

• Templates are available from the course homepage
(http://idenet.bth.se)

Introduction to MophunSimon Kågström – p. 13/37

Resources II

• Complete example from the Pong lab

res.txt
INFO METAINFO

{

"Title" : "Pong"

"Vendor" : "Simon Kågström"

"Copyright info" : "(c) Simon Kågström 2004"

"Program version" : "1.0"

"Help" : "Help me!"

}

SECTION DATA

// Tiles and sprites

BG_TILES TILESET 8 8 FORMAT RGB332 "gfx/tiles.bmp"

BALL_SPRITE SPRITE FORMAT RGB332 "gfx/ball.bmp"

PADDLE_SPRITE SPRITE FORMAT RGB332 "gfx/paddle.bmp"

res.h
[...]

extern unsigned char BG_TILES[384];

#define BG_TILES_COUNT 6

#define BG_TILES_TILESIZE 64

[...]

extern SPRITE BALL_SPRITE;

#define BALL_SPRITE_WIDTH 8

#define BALL_SPRITE_HEIGHT 8

#define BALL_SPRITE_CENTERX 0

[...]

Introduction to MophunSimon Kågström – p. 14/37

Input handling

• Input handling in mophun is fairly simple

– But: there are device-specific quirks and bugs to look out
for!

• Mophun always supports a smallest subset of input facilities

– 4 direction keys, fire and select/back

– These are easily mapped to the numeric keypad and the
joysticks on most phones

• You generally want a bitmask of pressed keys

– uint32 t vGetButtonData()

– vGetButtonData() & KEY FIRE: test if fire/5-key
pressed

Introduction to MophunSimon Kågström – p. 15/37

Input handling II

• There is also API functionality for mouse/touchpad-like
pointer operation

– We won’t use it here though

• A simple example can be seen below

– Wait until the fire (5) key is pressed

void wait_keys(void)

{

uint32_t keys;

do {

keys = vGetButtonData();

if (keys & KEY_UP)

; /* Do something on up */

if (keys & KEY_DOWN)

; /* Do something else ... */

} while ((keys & KEY_FIRE) == 0);

}

Introduction to MophunSimon Kågström – p. 16/37

Graphics, introduction

• What do we need for a 2D game really?

– Sprites

– A background

– Big background image

– Tile-operations

• Double buffering

– Two buffers: one for drawing and one for displaying

– Drawed items are not shown on the screen until the buffers
are “flipped”

– vFlipScreen(int32 t block): Flip the buffers

– block specifies wait for vertical retrace (i.e. until the
screen is completely drawn)

Introduction to MophunSimon Kågström – p. 17/37

Graphics, initialization

• vSetTransferMode(mode): How to copy bitmaps,
MODE TRANS (transparent) or MODE BLOCK

– More in API ≥ 1.50

• vClearScreen(color): Clear the screen to color (use
vRGB(r,g,b))

• vSetClipWindow(x1,y1,x2,y2)

• Get the screen size (capabilities)
static void get_screen_size(int32_t *p_w, int32_t *p_h) {

VIDEOCAPS videocaps;

videocaps.size = sizeof(VIDEOCAPS);

if(vGetCaps(CAPS_VIDEO, &videocaps)) {

*p_w = videocaps.width;

*p_h = videocaps.height;

}

else

vTerminateVMGP(); /* Oh no! */

}

Introduction to MophunSimon Kågström – p. 18/37

intro.pdf — November 30, 2005 — 4

Graphics, sprites I

• What is a sprite?

– We all know that, of course: “small, human in form,

playful, having magical powers” (WordNet 2.0 August
2003). Aha...

• For computer games it generally denotes a moving object on
the screen

• Mophun provides a sprite framework with collision handling
etc.

• Probably the part of Mophun you will use the most!

– (So listen carefully...)

Introduction to MophunSimon Kågström – p. 19/37

Graphics, sprites II

• Sprites in Mophun are arranged in sprite slots

• Slots are used for collisions and as a list for drawing

• You initialize the number of slots with
vSpriteInit(n sprites)

• However: the bitmap is not tied to the slot

– Animations (player walking etc.) are handled separately,
see idenet

• vSpriteSet() is used to place sprites and set the bitmaps
vSpriteSet(5, &SPRITE_UP, 10, 10);

vSpriteSet(p_player->sprite_slot, p_player->p_sprite,

p_player->x, p_player->y);

• The above example places sprite number 5 on (10,10) and the
the player on its x and y position.

Introduction to MophunSimon Kågström – p. 20/37

Graphics, sprites III

• Call vUpdateSprite() to draw sprites to the back buffer

• This function draws all sprite slots visible on the screen

– It is safe to place a sprite outside the screen

• To draw the sprites on the screen you must call
vFlipScreen(1) as well

• vUpdateSpriteMap() is used to update both the sprites and
the tile map (more later)

Introduction to MophunSimon Kågström – p. 21/37

Graphics, sprites IV

#include <vmgp.h>

#include "res.h" /* SPRITE_BITMAP */

int main(int argc, char *argv[])

{

int16_t y=0;

int16_t x=0;

vClearScreen(vRGB(0,0,0));

vSpriteInit(1);

while (1) {

x = (x + 1) & 127;

/* Place the sprite */

vSpriteSet(0, &SPRITE_BITMAP,

x, y);

/* Update sprites */

vUpdateSprite();

/* Draw everything */

vFlipScreen(1);

}

}

• A complete example!

• We assume that you have a
res.txt resource file

• This moves a sprite across
the screen from left to right

• No way to exit :-)

Introduction to MophunSimon Kågström – p. 22/37

Graphics, sprites V: collisions

• There are some predefined functions in Mophun for collisions

• vSpriteCollision(uint8 t slot, uint8 t slotfrom,
uint8 t slotto): Check for collisions between slot and
[slotfrom ... slotto].

• The function returns the index of the first collision

• Multiple collisions? We need a loop then...

• Example below from the Pong game (paddle and ball)
/* Bounce against paddle? */

if (vSpriteCollision(p_paddle->sprite_slot,

p_ball->sprite_slot, p_ball->sprite_slot) >= 0)

{

/* A collision! handle that */

}

Introduction to MophunSimon Kågström – p. 23/37

Graphics, tiles

• Tilemaps are useful in many 2D-based games

• Tiles in mophun are 8 by 8*n tiles BMP images.

• Tiles are used in tilemaps

• A tilemap defines a NxM “map” of tiles

• A tilemap is a one-dimensional array of 8-bit values

– Every value in the array specifies a tile-number (starting at
1, tile 0 is empty)

– Tilemaps can have attributes

– (Then) every other value is an attribute value (i.e. every
array element takes 16 bits)

– Attributes: Transparency, animation etc.

Introduction to MophunSimon Kågström – p. 24/37

intro.pdf — November 30, 2005 — 5

Graphics, tile initialization

• Tilemaps must be initialized with vMapInit(MAP HEADER*)

• An example is given below
The map data

/* Beware: In version < 1.30,

* the tilemap size must be

* as large as the screen area.

*/

#define LEVEL_W 8

#define LEVEL_H 7

static uint8_t level_map[] =

{

/* No attributes */

2, 2, 2, 2, 2, 2, 2, 2,

2, 1, 2, 1, 1, 1, 1, 2,

2, 1, 2, 1, 1, 1, 1, 2,

2, 3, 2, 1, 3, 2, 2, 2,

2, 1, 2, 1, 1, 1, 2, 2,

2, 1, 2, 1, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2,

};

Initialization code
static void init_level(MAP_HEADER *p_bgmap)

{

memset(p_bgmap, 0, sizeof(MAP_HEADER));

/* Initialise the background map */

p_bgmap->width = LEVEL_W;

p_bgmap->height = LEVEL_H;

p_bgmap->mapoffset = level_map;

p_bgmap->tiledata = BG_TILES; /* from res.h */

p_bgmap->format = BG_TILES_FORMAT; /* ditto */

/* Setup the background map */

if (!vMapInit(p_bgmap))

vTerminateVMGP(); /* Failed, terminate! */

}

Introduction to MophunSimon Kågström – p. 25/37

Graphics, tiles, checking against

• You usually need to check the tilemap for the tile at certain
coordinates

– Sokoban game: if a ball is on a hole

– Pong, lab 2: if the ball bounces against a wall

– Racing game: what material are we driving on?

• This is simple to do manually (tilemap[y*MAP W+x], in
tilemap coordinates).

• Mophun can also do this for you (vMapGetTile(x,y), also
in tilemap coordinates).

• Where should the checking be done? Depends:

– Racing game: on contact with the material

– Pong, lab 2: if the ball moves towards the wall

Introduction to MophunSimon Kågström – p. 26/37

Graphics, misc.

• There are many more functions in the mophun API

• Lookup these in the API documentation

• A note about the palette support:

– Mophun uses RGB332, i.e. a 255-entry palette with 3 bits
for red and green and two for blue

– Sounds primitive, but is useable.

Introduction to MophunSimon Kågström – p. 27/37

Sound

• The mophun sound capabilities differs very much between
platforms

• Older phones (T610 etc.) have only very basic sound options

– vBeep(5000,50): Play a beep (think PC-speaker) at
5000 Hz for 50 ms

– vPlayResource(BOUNCE, BOUNCE SIZE,
SOUND TYPE AMR): Play the AMR sample bounce

– See the documentation for more information about these

• Newer phones (API ≥ 1.50) have a much more advanced API

– Since rather few of you have such phones, we’ll skip it!

Introduction to MophunSimon Kågström – p. 28/37

Capabilities

• Different phones support different parts of Mophun

• Capabilities is a way of checking this

• We have already seen the screen-size capabilities, there are
many other:

– Communication

– Input

– Sound

– System (vendor etc.)

• Consult the Mophun documentation for more about this
subject

Introduction to MophunSimon Kågström – p. 29/37

Complete example
#include <vmgp.h>

#include <vmgputil.h> /* msSleep */

#include "res.h"

#define LEVEL_W 8

#define LEVEL_H 7

static uint8_t level_map[] = {

/* No attributes */

2, 2, 2, 2, 2, 2, 2, 2,

2, 1, 2, 1, 1, 1, 1, 2,

2, 1, 2, 1, 1, 1, 1, 2,

2, 3, 2, 1, 3, 2, 2, 2,

2, 1, 2, 1, 1, 1, 2, 2,

2, 1, 1, 1, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2,

};

int main(int argc, char **argv) {

MAP_HEADER bgmap;

int y = 16; /* Ugly... */

vClearScreen(vRGB(255,0,0));

vSetClipWindow(0,0,128,206);

vSpriteInit(1); /* One sprite */

/* Zero the background map */

memset(&bgmap, 0, sizeof(MAP_HEADER));

bgmap.width = LEVEL_W;

bgmap.height = LEVEL_H;

bgmap.mapoffset = level_map;

bgmap.tiledata = BG_TILES; /* from res.h */

bgmap.format = BG_TILES_FORMAT; /* ditto */

vMapInit(&bgmap); /* Use our background map */

while(1) {

uint32_t keys = vGetButtonData();

if (keys & KEY_DOWN)

y = (y + 1) & 31; /* Keep the sprite 0..31 */

if (keys & KEY_UP)

y = (y - 1) & 31;

vSpriteSet(0, &BALL_SPRITE, 5, y);

vUpdateSpriteMap();

msSleep(50);

vFlipScreen(1);

}

vMapDispose();

vSpriteDispose();

return 0;

}

Introduction to MophunSimon Kågström – p. 30/37

intro.pdf — November 30, 2005 — 6

The Pong labs

• You can download some examples from idenet

– sprite animation, a complete sokoban game, font handling

and a state machine example.

• The Pong lab specs contain a description of useful functions
for the labs

• Start implementing them on time!!

Introduction to MophunSimon Kågström – p. 31/37

Makefiles

• Make is a tool used for deciding which files to rebuild in a
project (used in your projects)

• Used since the beginning of time in UNIX, extremely powerful
tools

– You, however, will use the simpler nmake

• A Makefile uses rules to decide if rebuilding is needed

.c.o:

pip-gcc -c $(CFLAGS) -o $@ $<

• This rule states that object-files (*.o) depends on C
source-files (*.c).

• Example: main.o depends on main.c

Introduction to MophunSimon Kågström – p. 32/37

Makefiles II

• Environment variables can be used in Makefiles:
CFLAGS = -Wall -O2 # Set $(CFLAGS)

• Targets specify files that can be generated by the Makefile

(also a rule):
OBJS = res.o main.o

my_game.mpn: $(OBJS)

pip-gcc -mstack=512 -mdata=16384 $(OBJS) -o $@

all: my_game.mpn

• The all -target is the default target

• Another common target is clean

rm = del

clean:

$(rm) *.o *~

Introduction to MophunSimon Kågström – p. 33/37

Makefiles III

• Complete example
Settings

rm = del

CFLAGS = -Wall -g -fvstudio # Set $(CFLAGS)

OBJS = res.o main.o

Rules

.c.o:

pip-gcc -c $(CFLAGS) -o $@ $<

res.o: res.txt

morc res.txt -o $@

Targets

my_game.mpn: $(OBJS)

pip-gcc -mstack=512 -mdata=16384 $(OBJS) -o $@

clean:

$(rm) *.o *~

all: my_game.mpn

• See http://idenet.bth.se for template Makefiles

Introduction to MophunSimon Kågström – p. 34/37

What did we learn today?

• Basic information about the Mophun API

• How to use sprites, tilemaps, etc.

• Some things about resources

• Also how to compile and link mophun apps (introduction to
Makefiles)

• What have we not learned:

– Communication API (rumor says: buggy)

– Sound API (large differences between versions)

– Text output (see example on idenet)

– plus lots and lots of details

Introduction to MophunSimon Kågström – p. 35/37

Debugging mophun applications

• Debugging Mophun applications is done with GDB

• PIP-GDB and a graphical frontend (Insight) is installed on the
students’ computers

• There will be a separate document describing how to work
with it

• Unfortunately, VC++ cannot run GDB integrated

– (GNU/Emacs can of course, also for Mophun)

• Still, you will need to use the debugger

Introduction to MophunSimon Kågström – p. 36/37

intro.pdf — November 30, 2005 — 7

Skool Daze!

• C64, 198?)

• Excellent idea, great gameplay and technically very simple

Introduction to MophunSimon Kågström – p. 37/37

